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multishocked gasdynamic flows. This is due to their ro-
bustness for strong shock wave calculations. A generalShock-capturing methods have become an effective tool for the

solution of hyperbolic partial differential equations. Both upwind discussion of the modern high-resolution shock-capturing
and symmetric TVD schemes in the framework of the shock-captur- methods and their application for a variety of gasdynamic
ing approach are thoroughly investigated and applied with great problems can be found in [1, 2]. The extension of these
success to a number of complicated multidimensional gasdynamic

schemes to the equations of the ideal magnetohydrody-problems. The extension of these schemes to magnetohydrody-
namics (MHD) is not straightforward. First, the exact solu-namic (MHD) equations is not a simple task. First, the exact solution

of the MHD Riemann problem is too multivariant to be used in tion [3] of the MHD Riemann problem is too multivariant
regular calculations. On the other hand, the extensions of Roe’s to be used in regular calculations. Second, several different
approximate Riemann problem solvers for MHD equations in gen- approximate solvers [4–9], applied to MHD equations are
eral case are nonunique and need further investigation. That is why,

now at the stage of investigation and comparison.some simplified approaches should be constructed. In this work,
The schemes [4–7] are based on the MHD extensionsthe second order of accuracy in time and space high-resolution

of Roe’s linearization procedure [10]. In [4], the attemptLax–Friedrichs type scheme is suggested that gives a drastic simpli-
fication of the numerical algorithm comparing to the precise charac- of such extension was made and the second-order upwind
teristic splitting of Jacobian matrices. The necessity is shown to scheme was constructed that demonstrated several advan-
solve the full set of MHD equations for modeling of multishocked tages in comparison with Lax–Friedrichs, Lax–Wendroff,flows, even when the problem is axisymmetric, to obtain evolution-

and flux-corrected transport schemes. Roe’s procedure,ary solutions. For the numerical example, the MHD Riemann prob-
nevertheless, turned out to be realizable only for the speciallem is used with the initial data consisting of two constant states

lying to the right and to the left from the centerline of the computa- case with the specific heat ratio c 5 2. The reason for such
tional domain. If the problem is solved as purely coplanar, a slow behavior of MHD equations is that there is not any single
compound wave appears in the self-similar solution obtained by averaging procedure to find a frozen Jacobian matrix for
any shock-capturing scheme. If the full set of MHD equations is

the system. That is why a simple arithmetic average of gasused and a small uniform tangential disturbance is added to the
dynamic parameters was used for the calculation of fluxesmagnetic field vector, a rotational jump splits from the compound

wave, and it degrades into a slow shock. The reconstruction process on cell surfaces. This implies that the stationary discontinu-
of the nonevolutionary compound wave into evolutionary shocks ities are no longer steady solutions of the resulting numeri-
is investigated. Presented results should be taken into account in the cal scheme (see [2] for the regular mathematical back-
development of shock-capturing methods for MHD flows. Q 1996

ground). However, they still can be resolved within severalAcademic Press, Inc.
mesh cells. Another linearization approach is used in [5–7],
where the linearized Jacobian matrix is not a function
of a single averaged set of variables, but it depends in a1. INTRODUCTION
complicated way on the variables on the right and on the

TVD upwind and symmetric differencing schemes have left sides of the computational cell surface. This averaging
was shown to be nonunique in [7].recently become very efficient tool for solving complex
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In [9], a nonlinear approximate Riemann problem solver the construction of the solution is possible both with evolu-
tionary and nonevolutionary shock waves. The solution inis suggested in which all the waves emanating from the

initial discontinuity are treated as discontinuous jumps. this case is nonunique. Depending on the method applied,
a nonevolutionary solution can be realized in numericalThat is why it is applicable only for weak rarefactions.

Apart from that, the solver proposed is somewhat time- calculations which is closer to the initial conditions; see
[3]. If the full set of three-dimensional MHD equations isconsuming and sensitive to the initial approximation for

the iteration process. solved and a small tangential disturbance is added to the
magnetic field vector, a rotational jump splits from theTaking into account the above-mentioned remarks some

simplified approaches have to be constructed which should compound wave and it degrades into the slow shock. This
means that the compound wave is unstable against tangen-(1) satisfy the TVD property and (2) be enough economical

and robust. It should be emphasized that the TVD property tial disturbances and is nonevolutionary in three dimen-
sions.is only valid for homogeneous scalar hyperbolic conserva-

tion laws [1] and the extension of TVD schemes for multidi- The necessity of three-dimensional consideration of
MHD Riemann problems has been once again admittedmensional systems is performed in the traditional way [2].

In this paper, the second order of accuracy in time and recently in [9]. Its authors, however, are vague as to the
possibility of the existence of compound waves and tospace TVD Lax–Friedrichs (see, [11]) type scheme is sug-

gested that gives great simplification of the numerical algo- the uniqueness of solutions of MHD equations. Here we
investigate the process of the flow reconstruction leadingrithm in the finite-volume formulation comparing to the

schemes which use the precise characteristic splitting of to the decomposition of nonevolutionary solutions.
In Section 2, the ideal MHD Riemann problem is formu-Jacobian matrices. The results obtained by the proposed

scheme were compared to those from [4, 9] and good lated. In Section 3, we present a Lax–Friedrichs type sec-
ond-order-accuracy high resolution scheme for MHDagreement was observed.

Another important thing is that certain initial- and equations. In Section 4, the stability of MHD shocks is
discussed. In Section 5, numerical results are presented andboundary-value problems can be solved nonuniquely using

different shocks or different combinations of shocks, the appearance of nonevolutionary solutions is admitted
when the dimension of the system of governing equationswhereas physically one would expect only unique solutions.

The situation differs from that of pure gas dynamics, where is reduced. Several numerical one-dimensional tests are
performed to study the abilities of the proposed numeri-all entropy-increasing solutions are evolutionary and physi-

cally relevant. This means that the necessary conditions cal method.
of the well-posedness for the linearized problem of their
interaction with small disturbances are satisfied. Contrary 2. MHD RIEMANN PROBLEM
to that, in a MHD case, the condition of the entropy in-

Ideal MHD equations describe the flow of the infinitelycrease is necessary, but not sufficient. Only slow and fast
conducting fluid in the presence of a magnetic field. InMHD shocks turned out to be evolutionary, while interme-
the curvilinear coordinate system it can be written in thediate (or improper slow) shocks are to be excluded [3, 12].
following conservative form:The evolution of switch-on and switch-off shocks which

are the limiting cases of fast and slow shocks was investi-
gated both analytically and numerically in [13, 14]. In [15, ­r

­t
1 rvi

,i 5 0 (1)
16], C. C. Wu investigated the importance of intermediate
structures related to intermediate MHD shocks in the vis-
cous and/or finite conductivity cases. ­rvi

­t
1 Srviv j 1 p0gij 2

BiB j

4f D
, j

5 0 (2)
In this work, as a numerical example the ideal MHD

Riemann problem is used with the initial data consisting
of two constant states lying to the right and to the left of ­e

­t
1 F(e 1 p0)vi 2

Bi

4f
glmvlBmG

,i
5 0 (3)

the centerline of the computational domain. If the problem
is solved as strictly coplanar, a compound wave can appear ­B

­t
5 rot [v 3 B] (4)(see, e.g., [4]) that is considered nonevolutionary in [3,

12]. Such shocks should degrade and are not realizable in
Bi

,i 5 0. (5)physical problems. The peculiarity of MHD is that there
exist discontinuities that are nonevolutionary only with
respect to Alfvenic (rotational) disturbances. That is why, Here r, vi, Bi, p, and e 5 p/(c 2 1) 1 rv2/2 1 B2/

8f are the density, the velocity, and the magnetic fieldif a strictly coplanar problem is considered (velocity and
magnetic field vectors lie in the same plane and the system contravariant components, the pressure, and the full en-

ergy per unit volume (B2 5 gijBiB j). The total pressure isof MHD equations includes only two vector components)
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defined as p0 5 p 1 B2/8f; gij is the covariant metric tensor, After that a linear distribution of parameters in the com-
putational cells is assumed and a slope-limiting proceduref i

, j defines the covariant derivative of the function f i ac-
cording to the space coordinate x j, and c is the specific is used to define them on the cell boundaries. In this work,

the above-mentioned procedure is applied to the simpleheat ratio.
Let us consider a one-dimensional case when all the flow parameters. It can be applied to characteristic or con-

servative functions instead. The simplest ‘‘minmod’’ func-variables depend only on the time t and the space coordi-
nate x. Then, the system (1)–(5) after the proper normaliz- tions can be chosen to find the parameter values on the

cell surfaces:ing of variables, such that the factor of 4f does not appear,
acquires the form:

uR
i11/2 5 un11/2

i11 2 As minmod(Di11/2 , Di13/2) (15)
rt 1 (ru)x 5 0 (6)

uL
i11/2 5 un11/2

i 1 As minmod(Di21/2 , Di11/2) (16)
(ru)t 1 (ru2 1 p0 2 B2

x)x 5 0 (7)
minmod(x, y) 5 sgn(x) ? maxh0, min[uxu, y sgn(x)]j, (17)

(rv)t 1 (ruv 2 BxBy)x 5 0 (8)
where Di11/2 5 un11/2

i11 2 un11/2
i , and uR

i11/2 and uL
i11/2 , defined(rw)t 1 (ruw 2 BxBz)x 5 0 (9)

by Eqs. (15)–(16), represent parameter values on the right
(By)t 1 (Byu 2 Bxv)x 5 0 (10) and on the left sides of the cell surface with the index

‘‘i 1 As .’’(Bz)t 1 (Bzu 2 Bxw)x 5 0 (11)
After this reconstruction procedure a modified Lax–

et 1 [(e 1 p0)u 2 Bx(Bxu 1 Byv 1 Bzw)]x 5 0. (12) Friedrichs step follows,

Corrector:
Bx ; const due to the condition div B 5 (Bx)x 5 0 and
owing to the Maxwell equation for Bx omitted above. We

un11
i 5 un

i 2 ( f̃ n11/2
i11/2 2 f̃ n11/2

i21/2 )
Dt
Dx

(18)start with the aim to solve the ideal MHD Riemann prob-
lem with the initial data consisting of two constant states
‘‘l’’ and ‘‘r’’ lying to the left and to the right from the

f̃i11/2 5
1
2

[f(uR
i11/2) 1 f(uL

i11/2) 1 Fi11/2] (19)centerline of the computation region.

Fi11/2 5 2R̂i11/2(uR
i11/2 2 uL

i11/2). (20)
3. NUMERICAL SCHEME

Here R̂i11/2 is a diagonal matrix with the same elementsThe system of Eqs. (6)–(12) can be rewritten in the form:
on its diagonal equal to the spectral radius r (the maximum
of eigenvalue magnitudes) of the Jacobian matrix ­f/­u:­u

­t
1

­f
­x

5 0. (13)

r 5 uuu 1 cf , c2
f 5

1
2

((a*)2 1 Ï(a*)4 2 4a2b2
x)

Let us introduce the mesh functions:
bx 5 Bx/r1/2, by 5 By/r1/2, bz 5 Bz/r1/2

un
i 5 u(tn, xi), fn

i 5 f(un
i ), tn 5 nDt, xi 5 (i 2 1)Dx,

b2 5 b2
x 1 b2

y 1 b2
z , (a*)2 5 (cp 1 B2)/r, a2 5 cp/r.

n 5 0, 1, ..., i 5 1, 2, ..., I,
Having the second order of accuracy, the proposed

scheme is much less dissipative than the original Lax–with the space increment Dx and time increment Dt defined
Friedrichs scheme. This feature will be considered in Sec-by the CFL condition.
tion 5.To achieve the second order of accuracy in time a pre-

dictor–corrector procedure is used. The central difference
4. NONEVOLUTIONARY SOLUTIONS IN MHDapproximation of spatial derivatives of Eq. (13) is adopted

for the predictor step,
The wave, or discontinuity, is called evolutionary if the

Predictor: number of boundary conditions for the linearized problem
of the shock wave interaction with small incoming distur-
bances is equal to the number of unknown variables. Thoseun11/2

i 5 un
i 2 ( f n

i11 2 f n
i21)

Dt
4Dx

. (14)
are the amplitudes of outgoing disturbances of the flow
parameters and the shock velocity. The evolutionarity con-
ditions for MHD shock waves have some peculiarities (seeThe approximation itself is known to be unstable.
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the interval BCD in the linearized problem of the interac-
tion with rotational disturbances. That is why, the system
of two independent equations cannot be met. As a result,
rw and Bz will be accumulated in the layer dx containing
a nonevolutionary jump, i.e., a nonstationary process is to
be expected. This process is not close to quasi-stationary
in the case of an ideal MHD model because the linearized
problem has no solution. A self-similar solution appears,
as s consequence of this process, consisting of evolutionary
shocks and a rotational discontinuity. These waves will
propagate at different speeds and will never meet again
in the nonevolutionary jump after such decay. In the case
of the ideal MHD (see [3]), an arbitrary small external
impulse within an arbitrary small time interval can destroy
a compound wave.

FIG. 1. Adiabatic MHD shock curve. If the viscosity, heat and/or electric conductivity are
finite, the structure of the finite width exists instead of a
jump. This nonevolutionary wave structure for the interval
BC is nonunique: there exists a family of bounded solutionsthe diagram in Fig. 1). Here Vi , ai2 , aiA , ai1 are velocities

of the gas and of the small disturbances with respect to continuously depending on one parameter (again, see [3]).
A nonstationary process appearing due to the interactionthe jump before (i 5 1) and after (i 5 2) it. The domains

of evolutionary solutions are shaded. The interval AB cor- with rotational disturbances leads, at first, to the change
of this parameter and, as a consequence, to the change ofresponds to slow shock waves, By being equal to zero in

the point B (switch-on shock). The interval BCD of the the above structure. This process, however, due to the
boundness of the solution can last only until the capacityadiabatic curve corresponds to nonevolutionary shock

waves. The velocity is equal to slow magnetosonic in the of this structure with respect to z-components of the mo-
mentum and/or of the magnetic field is exhausted. A quali-point C. The structure of these waves can be resolved, but

the solution for BC is nonunique [3]. Shocks from other tative restructuring described earlier will start after that.
In this case, the impulse destroying the compound waveparts of the adiabatic curve cannot have structure because

they correspond to rarefaction shocks and are not entropy should be sufficiently prolonged in time and high by its
amplitude. On the other hand, dissipative processes alwaysconsisting. It is well known that boundary conditions for

rotational disturbances in MHD split from the full set of are present in numerical calculations due to the scheme vis-
cosity.boundary conditions on the shock. That is why the evolu-

tionarity properties for this kind of disturbance should be In [15, 16], C. C. Wu investigated the existence of finite
width nonstationary solutions corresponding to intermedi-checked separately. The interval BCD of the adiabatic

curve turns out to be nonevolutionary with respect to rota- ate shocks in the viscous and/or finite conductivity cases.
Such solutions can be observed for a long time, dependingtional disturbances. That means that a slow Riemann wave

can follow it (a compound wave). The interval BC corre- on the amount of the molecular or the magnetic viscosity.
We consider this problem here from another viewpoint. Assponds to solutions that are nonevolutionary with respect

to the full set of disturbances, while it is stable with respect long as the ideal MHD flows are considered, the physical
viscosity should be neglected and the above-mentionedto plane (xy) ones. The consequence is that, if a coplanar

flow is considered (z-components of the magnetic field and intermediate shocks are unstable against infinitesimal Alf-
venic perturbation. The numerical viscosity, whose amountof the momentum are omitted), such kind of shocks can

appear in this region. The interval CD corresponds to is sometimes unknown, can lead to the existence of com-
pound waves within a period of time that is dependent onsolutions that are nonevolutionary both for Alvenic and

plane disturbances. the computational mesh size. This phenomenon is con-
nected, not with the physical model, but with the dissipa-Two relations on the discontinuity used to define the

amplitudes of rotational disturbances describe the conser- tion effects introduced by the numerical scheme. It is ex-
tremely important and will be studied in the next section.vation of fluxes for z-component of the momentum and

the y-component of the electric field in the coordinate
system connected with the jump. Due to Faraday’s law, 5. NUMERICAL RESULTS
this means that the z-component of the magnetic field flux
is also continuous along the axis x. Only one dependent At the beginning of this section we shall give some nu-

merical examples showing the correctness and the perfor-variable (see, [3]) exists for shock waves corresponding to
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FIG. 2. The propagation of a MHD fast shock: c 5 Gd, Bx ; 5, Mach number 5 10. The profiles at t 5 0.05 and t 5 0.1.
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FIG. 3. The propagation of a MHD slow shock: c 5 Gd, Bx ; 5, Mach number 5 3.43. The profiles at t 5 0.16.



NONEVOLUTIONARY SOLUTIONS IN MHD 83

FIG. 4. The propagation of a magnetosonic shock: c 5 Gd, Bx ; 0, Mach number 5 12.76. The profiles at t 5 0.225 and t 5 0.45.

mance of the proposed numerical scheme for one-dimen- the factor Ï4f for the convenience of their comparison
with [17].sional simulations of the propagation of MHD waves and

of the Riemann problem containing different types of The first example is a fast shock (Fig. 2). The initial
conditions for (r, p, u, v, w, By/Ï4f, Bz/Ï4f) are (3.896,shocks in its solution. The chosen tests are taken from [17]

that give the possibility of comparing our results with those 305.9, 0, 20.0057, 20.228, 3.951, 15.8) for x , 0.2 and (1,
1, 215.30, 0, 0, 1, 4) for x . 0.2 with Bx being 5, whichpresented in that work.

The specific heat ratio c is set to Gd in all test examples. represents a fast shock wave with a Mach number of 10.
The profiles at t 5 0.05 and t 5 0.1 are shown (the CourantThe grids are uniform with 200 computational cells be-

tween zero and unity for the results presented in Figs. 2–4 number is 0.5). No artificial viscosity were introduced. The
waves near x 5 0.2 in Fig. 2 should be considered as ‘‘start-and with 400 cells for the solution of the Riemann problem

presented in Fig. 5. In all numerical tests the resulting ing errors’’ arising from the purely discontinuous initial
conditions for this problem (see [17] for the discussion).values of the magnetic field components are multiplied by
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FIG. 5. The generation of seven discontinuities, 400 cells, c 5 Gd, Bx ; 4. Initially (r, p, u, v, w, By/Ï4f, Bz/Ï4f 5 (0.18405, 0.3541, 3.8964,
0.5361, 2.4866, 2.394, 1.197) for x , 0.5 and (0.1, 0.1, 25.5, 0, 0, 2, 1) for x . 0.5). The profiles are presented at t 5 0.15 for the choice of the limiter
(21)–(24) with h 5 Ad; (a) g 5 1; (b) g 5 2; compressive limiter.
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FIG. 5—Continued



86 BARMIN, KULIKOVSKIY, AND POGORELOV

These waves are weaker, comparing to [17], due to the
greater numerical viscosity of our scheme. The results are
very close to those presented in [17] with the difference
in the fourth significant digit in the constant flow regions.

To study the propagation of a MHD slow shock, we
give the following initial conditions which represent a slow
shock with a Mach number of 3.5 at x 5 0.2: (r, p, u, v,
w, By/Ï4f, Bz/Ï4f) is (3.108, 1.4336, 0, 0.2633, 0.1, 0.1)
for x , 0.2 and (1, 0.1, 20.9225, 0, 0, 1, 1) for x . 0.2 with
Bx ; 5. The results are presented in Fig. 3 for t 5 1.6 and
are in a good agreement with [17].

Figure 4 shows the results of the propagation of a magne-
tosonic shock with a Mach number of 12.8, which is repre-
sented initially by the following left and right states: (r, p,
u, v, w, By/Ï4f, Bz/Ï4f) 5 (7.8073, 65.7254, 0, 0, 0, 7.8073,
3.9036) for x , 0.1 and (2., 0.1, 25.4959, 0, 0, 2, 1) for
x . 0.1 with Bx ; 0. The results are presented for t 5
0.225 and t 5 0.45 (values of v and w are almost equal to
zero and not shown). We can see that the smearing of FIG. 6. Self-similar density distribution (coplanar problem).
shocks are not large and their velocity is sufficiently cor-
rectly determined for all cases considered; see Examples
2–4 in [17] for the comparison.

that, although being more dissipative than the schemes
The sharpness of contact discontinuities and Alfvenic

based on the Riemann problem solvers [6, 17], they are
shocks, however, is not so good, as can be seen from Fig.

physically consistent and have a reasonable accuracy.
5a corresponding to the solution of the following Riemann

For the further study we choose the same ideal MHD
problem: initially (r, p, u, v, w, By/Ï4f, Bz/Ï4f) 5

Riemann problem, as in [4], which is a Cauchy problem
(0.18405, 0.3541, 3.8964, 0.5361, 2.4866, 2.394, 1.197) for

with the initial data consisting of constant states ul and
x , 0.5 and (0.1, 0.1, 25.5, 0, 0, 2, 1) for x . 0.5 with

ur . Let
Bx ; 4. The results are presented for t 5 0.15 (400 cells
were taken between 0 and 1). The following slope limiters

rl 5 1, ul 5 0, vl 5 0, pl 5 1, (By)l 5 1
were used for obtaining the solution shown in Fig. 5a [18],

rr 5 0.125, ur 5 0, vr 5 0, pr 5 0.1, (By)r 5 21.

uR
i11/2 5 un11/2

i11/2 2 Af [(1 2 h)D̃i13/2 1 (1 1 h)D̃̃i11/2] (21)
In addition, Bx ; 0.75 and c 5 2. Note that the magnetic
field component By changes its sign, or rotates, to the angleuL

i11/2 5 un11/2
i 1 Af [(1 2 h)D̃̃i21/2 1 (1 1 h)D̃ i11/2] (22)

f across the initial jump.
D̃i11/2 5 minmod(Di11/2 , gDi21/2) (23) In [4] different numerical schemes were tried. All of
D̃̃i11/2 5 minmod(Di11/2 , gDi13/2) (24) them give qualitatively the same picture of the flow, but

the Roe’s extension to MHD equations produces much
sharper discontinuities with the absence of spurious oscilla-with h 5 Ad and g 5 1. The choice h 5 21 gives the formulas

coinciding with Eqs. (15)–(17) and provides almost the tions.
In Figs. 6–10 the self-similar distributions of the density,same results. More compressive slope limiters should be

applied for finer resolution of all discontinuities. The the velocity components u and v, the magnetic field compo-
nent By , and the pressure obtained for the coplanar prob-choice h 5 Ad, g 5 2 gives much better results (not shown),

but some numerical noise is attendant in this case in the lem by the numerical scheme from Section 3 are presented.
The number of grid points is 800 with Dx 5 1 and Dt 5vicinity of strong shocks, which is similar to that being

suppressed by the artificial viscosity in [17]. We avoided 0.2 (CFL number p0.8). This solution is shown after 400
time steps. The initial discontinuity is located in the middlethis noise (see Fig. 5b), by applying the limiters with g 5

2 for all primitive values, excluding the pressure. Its slopes of the computational interval. One can see fast rarefaction
waves FR, a contact discontinuity CD, a slow shock wavewere limited using g 5 1. We should also admit that the

choice h 5 Ad (the third-order upwind-biased scheme) is SS, and a slow compound wave CW. The results are in a
good agreement with those obtained by the method ofimportant for obtaining more precise solutions. Thus, com-

parison of the results obtained using the proposed scheme Brio and Wu [4]. The second order of accuracy in time
and space high-resolution Lax–Friedrichs type schemewith the numerical and with the exact solutions [17] shows
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FIG. 9. Self-similar distribution of By (coplanar problem).FIG. 7. Self-similar distribution of the velocity component u (copla-
nar problem).

In [4], a number of arguments were given in favour of
the justification of the existence of the before-mentionedproposed above gives, meanwhile, drastic simplification
compound wave. In fact, such a wave will decay under theof the numerical algorithm because eigenvectors of the
influence of tangential disturbances as nonevolutionary.Jacobian matrices need not be calculated. In addition, nu-
Disturbances of this type cannot appear in the Riemannmerical flux (19) automatically satisfies the entropy in-
problem considered as a strictly coplanar one. In nature,equality. In problems containing shocks and contact dis-
of course, they can fairly easily exist unless the flow iscontinuities similar to those considered in the above
artificially restricted in one of the tangential directions.problem, one can use more compressive limiters for param-

If we consider the three-dimensional problem with theeters that are discontinuous across the contact surface and
parameters depending only on t and x and give a uniformthe Alfvenic jumps.
disturbance Bz 5 0.1, just to make the proper equations

FIG. 8. Self-similar distribution of the velocity component v (copla-
nar problem). FIG. 10. Self-similar pressure distribution (coplanar problem).
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FIG. 11. Parameter distributions after 8000 time steps (3D problem).
FIG. 13. Parameter distributions after 58000 time steps (3D problem).

work, the results change significantly and another configu-
ration is realized. The component Bz gradually increases in the floating computational window with the number of
and a rotational jump splits from the compound wave. The points equal 6000 for Fig. 11 and 4000 for Figs. 12–13, the
slow shock remaining is no longer a Jouget jump and it mesh size being Dx 5 2 and CFL number 0.8. After the
starts to interact with the rarefaction wave, in accordance first 8000 steps the results were interpolated into the grid
with the path AB of the adiabatic shock curve (Fig. 1). with Dx 5 1 and a 4000 mesh-point window was placed
The intensity of this shock decreases until the rarefaction around the compound wave. On the plots the window size
wave vanishes. is normalized. To look inside the parameter distribution

The change of the parameters in time is presented in in the region close to the rotational shock the values of
Figs. 11–13. Here the distributions are presented of the the tangentional components of the velocity vector v and
density, By and Bz components of the magnetic field in the magnetic field B are presented in Fig. 14.
vicinity of the questionable zone. The figures are placed

FIG. 14. Distributions of uutu and uBtu after 58000 time steps (3D
problem).FIG. 12. Parameter distributions after 13000 time steps (3D problem).



NONEVOLUTIONARY SOLUTIONS IN MHD 89

FIG. 15. Parameter distributions for the 3D problem at the same time FIG. 17. Nonevolutionary shock decomposition. By distributions after
as the results presented in Fig. 11, but for a smaller numerical viscosity. 200 (1) and 6000 (2) time steps.

We mentioned earlier that, in the viscous case, the stabil-
tational region as in Fig. 11, but for the number of cellsity of the structure corresponding in an ideal MHD to the
equal to 12000 and Dx 5 1. It is clearly seen, that theintermediate shock depends on the value of the perturba-
compound wave in this case has already been destroyed.tion and on the time of its action. If we consider numerical
This should be taken into account by those dealing withsolutions to the ideal MHD equations, the stability of the
ideal MHD problems, especially when an adaptive meshcompound wave therefore depends on the mesh size, that
refinement is used.is, on the introduced amount of numerical viscosity. This

Another illustration of the described instabilities is theproperty is illustrated in Fig. 15, where the distributions
following. Let us take the right and the left parametersof r, By , and Bz are shown for the above Riemann problem
corresponding to the path CD of the adiabatic curve:exactly at the same moment of time and in the same compu-

rl 5 1, ul 5 0, vl 5 0, pl 5 1, (By)l 5 1, (Bz)l 5 0.1

rr 5 1.12895, ur 5 20.117236, vr 5 21.753716,

pr 5 1.12895, (By)r 5 20.8, (Bz)r 5 0.1.

Besides, Bx ; 1 and c 5 Gd. These parameters correspond
to a nonevolutionary shock from the path CD of the adia-
batic diagram, if Bz is not taken into account. In Figs. 16
and 17, the distributions of the density and By are shown
after 200 (1) and 6000 (2) time steps. The number of grid
points is 8000, Dx 5 0.5, CFL 5 0.8. The immediate decay
of the shock is evident, but the structure obtained contains
an intermediate shock that is unstable to rotational distur-
bances. It is clearly seen that up to 6000 time steps a
rotational jump splits from the initially formed com-
pound wave.

The results show that one should be very careful reduc-
ing the dimension of the physical MHD problems to be
sure to obtain really evolutionary solutions. This should
also be taken into account in the application of shock-FIG. 16. Nonevolutionary shock decomposition. Density distribu-

tions after 200 (1) and 6000 (2) time steps. capturing methods for ideal MHD flows. A self-similar
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evolutionary solution of MHD equations will be got auto- system in each grid point of the mesh. The numerical results
obtained with this scheme for MHD Riemann problem arematically if the full set of them is used.
in a good agreement with those obtained using the MHD

6. DISCUSSION AND CONCLUSION extension of the PPM scheme [17].
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